ALKYLATION OF METALLATED KETENE THIOACETALS. EFFECT OF THE HARDNESS OF THE LEAVING GROUP AND ELECTROPHILE William S. Murphy* and Sompong Wattanasin, Department of Chemistry, University College, Cork, Ireland

The harder the leaving group or the Lewis acid end of the alkylating agent, the higher the proportion of C-1 alkylation of lithium ketene thioacetal (6).

Ketene thioacetals are valuable synthetic intermediates.¹ They serve as masked α , β -unsaturated acyl anion equivalents. The conjugate base (1) can be prepared with n-butyl lithium from either the intermediate (2)² or (3)³ (Equation 1). In some instances electrophilic attack on (1) occurs exclusive-

ly at C-1; 1,2 , 3,4 in others, simultaneous attack at both C-1 and C-3 has been reported. 2,4 This latter occurrence has on occasion⁴ seriously limited the synthetic value of the method. An investigation of the factors influencing C-1 <u>vs</u> C-3 alkylation in this type system has not as yet been reported.

We now wish to report the results of our studies on 2-styryl dithiane (5)⁵ which were initiated by the following experiment. We had required the enone (4) for synthetic purposes. We undertook to synthesise it according to the synthetic scheme (Equation 2), anticipating C-1 alkylation (RX =

(4)

 $3-MeOC_6H_4CH_2Br)$. However the product consisted of a mixture of (7) and (8) in the ratio 10:90. We therefore undertook an investigation of this system.

In the anion (6) C-1 is harder⁶ than C-3. We anticipated, on the

basis of an earlier investigation of allyl anion alkylation⁷, that the hardness of the leaving group would affect the orientation of the alkylation. Our results (Table) dramatically bear out this prediction. The following conclusions can be made: (a) the C-l to C-3 ratio increases with increasing hardness 6 of the leaving group I < Br < Cl < OTS < SO₄, (b) in the alkylating agent RX, the influence of X is most dramatic when $R = CH_3$, (c) very hard acids such as those in Me $_3$ SiCl and D $_2$ O attack the hard C-l position exclusively, (d) the product of C-1 alkylation is invariably trans. This has been observed by others^{2,4} whichever synthetic method is used (Equation 1). This stereospecificity suggests either the preferential formation of (6) in its Wconfiguration, or an internally coordinated structure $(9)^{\theta}$, (e) the site of attack by benzyl halides is due to a combination of the inherent softness of the benzyl group and steric effects. The latter is indicated by a comparison of the results of 3-methoxybenzyl bromide and benzyl bromide (Table).

(6)	$\frac{\text{Rx/THF}}{-30^{\circ} \text{ to } -20^{\circ}}$	s +		r s
<u>Rx</u>	R	Yield*, % (7) + (8)	Ratio (8) :	** (7)
$3-MeO-C_6H_4-CH_2Br$	3-MeO-C ₆ H ₄ -CH ₂	69	90	10
phCH ₂ I	phCH ₂	60	90	10
phCH ₂ Br	phCH ₂	75	86	14
phCH ₂ Cl	phCH ₂	66	78	22
phCH ₂ OTS	phCH ₂	74	74	26
n-Propyl-I	n-Propyl	79	37	63
n-Propyl-Br	n-Propyl	57	27	73
CH ₃ I	CH ₃	60	44	56
CH 3 OTS	CH ₃	80	18	82
(CH ₃) ₂ SO ₄	CH ₃	55		100
(CH ₃) ₃ SiCl	Si(CH ₃) ₃	72		100
D ₂ O	D	70		100

*isolated yield. ** determined by n.m.r.

Specifically, these results increase the synthetic values of ketene

(9)

thioacetals.^{1,2,4} In general, in the alkylation of allyl anions although the C-1 to C-3 ratio depends on the steric bulk of the substituents on the anion,^{9,10} the nature⁹ and solvation of the counter ion¹¹, and the steric requirements of the alkyl halide¹⁰, still another parameter needs consideration. It is to correlate first the hardness of the

ambident anion with the electrophile.¹²

References

- D. Seebach, <u>Synthesis</u>, 1969, 17; D. Seeback, M. Kolb, and B.T. Gröbel, Tetrahedron Letters, 1974, 3171.
- 2. D. Seebach and M. Kolb, Ann., 1977, 811.
- See for example: L.D. Poulter and J.M. Hughes, <u>J. Amer. Chem. Soc</u>., 1977, <u>99</u>, 3830.
- 4. E.J. Corey and A.P. Kozikowski, Tetrahedron Letters, 1975, 925.
- 5. E. Vedejs and P.L. Fuchs, <u>J. Org. Chem</u>., 1971, <u>36</u>, 366.
- R.G. Pearson and J. Songstad, <u>J. Amer. Chem. Soc</u>., 1967, <u>89</u>, 1827; T.L. Ho, <u>J. Chem. Ed.</u>, 1978, 355.
- W.S. Murphy, R. Boyce and E.A. O'Riordan, <u>Tetrahedron Letters</u>, 1971, 4157.
- While (9) explains the formation of one stereoisomer, inspection of models does not make clear why this isomer should be trans.
- D.A. Evans, G.C. Andrews and B. Buckwalter, <u>J. Amer. Chem. Soc.</u>, 1974, 96, 5560.
- 10. W.C. Still and T.L. MacDonald, J. Amer. Chem. Soc., 1974, 96, 5561.
- P.M. Atlani, J.F. Biellmann, S. Dube and J.J. Vicens, <u>Tetrahedron</u> <u>Letters</u>, 1974, 2665.
- 12. All new compounds had satisfactory microanalysis, i.r., and ¹H n.m.r.

(Received in UK 12 March 1979)